MOLECULAR DIVERSITY OF THE DOPAMINE RECEPTORS

Olivier Civelli, James R. Bunzow, and David K. Grandy Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201

KEY WORDS: Parkinson's disease, schizophrenia, D₁ D₂ D₃, D₄ D₅, G protein-coupled receptors

INTRODUCTION

The Dopaminergic System and Its Relationship to Human Diseases

Our current understanding of the relationship between the dopaminergic system and human brain disorders is based on two fundamental discoveries: dopamine-replacement therapy can alleviate Parkinson's disease (1-3) and, secondly, many antipsychotic drugs are dopamine receptor antagonists (4-7). These discoveries have guided two major directions in dopamine-related basic research and drug design: to activate dopamine receptors left understimulated by the degeneration of the afferent dopamine-secreting cells and to prevent dopamine from binding to its receptor, according to the hypothesis that schizophrenia is the result of dopamine receptor overactivity (5, 8). Since blockade of the dopamine receptors (antipsychotic therapy) can lead to a state similar to that resulting from dopamine depletion (Parkinson's therapy) and higher doses of dopamine can cause psychoses, the therapies of disorders resulting from dopamine imbalances are associated with adverse side effects. The ideal drug(s) that will treat one disorder without affecting the other has thus far not been found. However, the search for such a drug has led to the design of several dopamine receptor ligands that, in turn, have increased our understanding of the dopaminergic system. In particular, these studies have led to the proposition that the etiology of movement disorders and psychoses involve different neuronal pathways and that the dopamine receptors may differ in these pathways. Here we review the latest developments regarding the dopamine receptors.

The dopaminergic system comprises three principal neuronal pathways: the nigrostriatal, the mesocorticolimbic, and the tuberoinfundibular. The nigrostriatal pathway contains the neurones of the substantia nigra, which synthesize dopamine and neurones of the striatum that respond to it. Degeneration of this pathway leads to Parkinson's's disease, underscoring its role in the control of locomotion. The mesocorticolimbic pathway, composed of neurones of the ventral tegmental area that connect with those of the limbic forebrain, is thought to be involved in emotional stability, contributing to the etiology of schizophrenia, and to be the desired site of action of the neuroleptics. The tuberoinfundibular pathway originates in the neurones of the hypothalamus. The dopamine secreted by these neurones into the portal blood is transported to the pituitary to regulate prolactin secretion from the pituitary. This pathway influences lactation and fertility.

The dopaminergic system relies on the interaction of dopamine with several receptors. In 1979 two were known and characterized as the D₁ and D₂ receptors (9). These receptors can been differentiated pharmacologically using D_1 and D_2 receptor-selective agonists and antagonists. Of therapeutic interest, most of the commonly prescribed neuroleptics bind the D₂ receptor with high affinity. These two receptors exert their biological actions by coupling to and activating different G protein complexes. The D₁ receptor interacts with G_s complexes resulting in the activation of adenylyl cyclase and in an increase in intracellular cAMP levels. The D₂ receptor interacts with G_i complexes to inhibit cAMP production. These biological activities placed the two dopamine receptors in the superfamily of G protein-coupled receptors, a feature of utmost importance for their molecular characterization. The anatomical distributions of these two receptors overlap in the CNS, yet their quantitative ratios differ significantly in particular anatomical areas. It is noteworthy with respect to mental disorders, that both D₁ and D₂ receptors are present in the nigrostriatal and mesocorticolimbic pathways.

For ten years, the two-subtype classification could accommodate most of the activities attributed to the dopaminergic system. This has changed with the definitive demonstration of the existence of several other dopamine receptors. These receptors have been reviewed recently (10–12). How the existence of new dopamine receptors will modify our previous conceptions of the dopaminergic system cannot be totally foreseen at this time. This review discusses the first ramifications that the dopamine receptor heterogeneity has brought on our understanding of the dopaminergic system.

HETEROGENEITY OF THE DOPAMINE RECEPTORS

Molecular Characterization of the Dopamine Receptors

The molecular characterization of the dopamine receptors originated with the recognition that G protein-coupled receptors are evolutionarily related (13–15). The discovery of their heterogeneity results from the application of this concept.

The existence of a G protein-coupled receptor supergene family was proposed on the basis of two receptor sequences, the rhodopsin and β_2 -adrenergic receptors. The rhodopsin receptor transmits light signals to the brain through its interaction with a specific G protein, known as transducin. The β -adrenergic receptors transmit adrenergic stimulation in heart and lung tissues by interacting with another G protein, known as G_s . When the molecular structure of the β_2 -adrenergic receptor was determined (16), its putative topology was found to be similar to that of the rhodopsin receptor. Both receptors were proposed to contain seven (putative) transmembrane domains in which several conserved amino acid residues are found. These similarities led to the concept that all receptors that couple to G protein to induce second messenger pathways might share these common structural characteristics. This concept was rapidly strengthened by the cloning of the acetylcholine-muscarinic2 and of the neuropeptide-substance K receptors (17–20).

An important outcome of the concept that G protein-coupled receptors share sequence similarities was the development of technical approaches applicable to the cloning of any G protein-coupled receptors without previous knowledge of the receptor's peptide sequence or of its biological activity (21). These approaches, referred to as "homology approaches," rely on the use of DNA probes encoding sequences expected to be conserved among G protein-coupled receptors and can be technically divided into: (a) The low-stringency screening approach, which uses DNA fragments (>300bp) as hybridization probes to identify homologous sequences under hybridization conditions of reduced stringency, and (b) the PCR (polymerase chain reaction)-based homology approach, which uses oligonucleotides, complementary to short (<50b) highly conserved sequences, as primers to amplify related cDNAs in polymerase chain reactions. The first approach led to the characterization of the D₂, the second was used for the D₁ dopamine receptors.

The D_2 dopamine receptor was cloned using the hamster β_2 -adrenergic receptor coding sequence as hybridization probe (22). A rat brain cDNA was identified via genomic and cDNA screenings and shown to encode a protein featuring the characteristics expected for a G protein-coupled receptor. This cDNA was transfected into eukaryotic cells and led to the expression of a receptor with the pharmacological profile and biological activity of the

dopamine D₂ receptor found in the brain and pituitary (22–24). In particular, the cloned receptor presented the expected affinity for neuroleptics and its stimulation inhibited adenylyl cyclase activity and prolactin secretion. This receptor is encoded by a gene (DRD₂) located on human chromosome 11q23 (25).

The PCR-based approach was used to clone the D_1 receptor from rat striatum (26, 27) and mouse NS20Y neuroblastoma cells (28), although the low-stringency screening approach was also successful (29). The resulting partial clones were used to screen human and rat DNA libraries. The sequences derived from these clones share the characteristics expected of G protein-coupled receptors in general and of the catecholamine receptors in particular (26). These putative receptors were expressed by DNA transfection and were shown to bind D_1 receptor ligands and to stimulate adenylyl cyclase activity, the two hallmarks of the D_1 receptor. The human D_1 receptor gene (DRD₁) is located on chromosome 5q35.1 (27, 30).

The success of the homology approach led to the search for other dopamine receptors. The D_3 receptor was originally identified by using a DNA fragment of the D_2 receptor as probe under low stringency hybridization conditions (31). Subsequent PCR extension and genomic library screening led to the isolation of a cDNA that encodes a receptor most closely related to the D_2 receptor. When expressed in eukaryotic cells, this receptor was shown to bind D_2 but not D_1 ligands. Although its ability to affect second messenger systems has not been demonstrated, its structure and binding characteristics permitted its classification as the D_3 receptor and has been assigned to chromosome 3q13.3 in human (DRD₃) (32).

By analyzing the mRNAs of human neuroepithelioma SK-N-MC cells with D₂ receptor cDNA probes under conditions of low stringency, another D₂-related mRNA was detected (33). The corresponding cDNA and gene analyses led to the characterization of the D₄ receptor. The D₄ receptor, when expressed in COS-7 cells, binds D₂ antagonists with a pharmacological profile distinct from, but reminiscent of, that of the D₂ receptor. Although the D₄ receptor can couple to G proteins, it has not been conclusively shown to modulate adenylyl cyclase activity. Its gene (DRD₄) is located at the tip of the short arm of the human chromosome 11p15 (34).

Finally, the D_1 receptor clone was used as a hybridization probe to identify D_1 -related genes. A human D_5 and a rat D_1 b receptors were subsequently characterized (35–37). They display the same pharmacological profile, reminiscent of that of the D_1 receptor and are able to stimulate adenylyl cyclase activity. On the basis of their sequences, the D_5 and D_1 b receptors are human and rat equivalents of the same receptor, respectively. The human D_5 receptor maps to 4pl5.1-pl5.3 (38).

Three "unexpected" dopamine receptors, D₃, D₄ and D₅, were discovered

through the application of homology screening techniques. The existence of dopamine receptors different from the canonical D_1 and D_2 receptor had been proposed over the past decade but had been refuted when receptors were recognized to exist in two affinity states (39, 40). One definitive outcome of the cloning of receptors is to make them physical entities. The cloned D_3 , D_4 and D_5 receptors had not been previously characterized in detail.

COMMON FEATURES OF THE DIFFERENT DOPAMINE RECEPTORS

The action of dopamine was, for the past decade or more, interpreted through its interactions with only two receptors. The discovery of the D_3 , D_4 , and D_5 receptors immediately raised the question whether the activities of these new receptors had been masked by those of the classical D_1 and D_2 receptors. The search for features common to both the new receptors and the classical ones can help resolve that possibility. The data presented here allows us to divide the dopamine receptors into two subfamilies, the D_1 -like (D_1 , D_5) and the D_2 -like (D_2 , D_3 , D_4) subfamilies (Table 1).

Gene Organization

The genomic organization of the dopamine receptors supports the notion that they derive from the divergence of two gene families, which can be divided into the D₁-like and D₂-like receptor genes (Figure 1). The D₁-like receptor genes do not contain introns in their protein-coding regions, whereas the D₂-like genes do (26, 27, 31, 33, 41). Such a gene organization differentiating two receptor subfamilies (D₁-like and D₂-like) has also been described for other G protein-coupled receptor gene families, including the serotonin (5HTla-like and 5HTlc-like) receptors (42). Strengthening this notion, several introns in the D₂-like receptor genes are located in similar positions (Figure 1). It is noteworthy that two introns (after transmembrane domain IV and at the 3' half of the third cytoplasmic loop) were found in the D₂ and D₃ receptor genes to correspond almost precisely to intron positions found in the opsin genes (41). These introns are, however, absent in the D₄ receptor gene. Finally, two features of interest have been described regarding the genomic organization of the D₂ receptor gene: it contains an unusually long intron (250 kb) dividing its mRNA 5'-untranslated region; 150 kb downstream of the D₂ gene is the N-CAM gene (J. H. Eubanks, M. Djabali, L. Selleri, D. K. Grandy, O. Civelli, et al, submitted).

Sequence and Topology

The overall topology of the five dopamine receptors is predicted to be highly similar. They should contain seven putative membrane-spanning α helices,

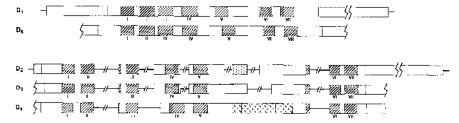


Figure 1 Genomic organization of the human dopamine receptor genes (data from refs. 31, 33, 36, 41, 74). Lines indicate introns, boxes exons; striped boxes with Roman numerals show the location of the putative transmembrane domains, shaded boxes those of the untranslated region of the corresponding mRNA; the pointed exon in the D_2 receptor gene is the alternatively spliced exon differentiating D_2 s from D_2 s (41). The seven repeats found in some human genes are outlined in hatched boxes in the D_4 receptor gene (91).

hallmark of the G protein-coupled receptors (44). By homology to the rhodopsin and adrenergic receptors, each of the dopamine receptor polypeptides should have its amino and carboxy termini located outside and inside the cell, respectively. The seven transmembrane domains would form a narrow dihedral hydrophobic cleft surrounded by three extracellular and three intracellular loops. The receptor polypeptides are probably further anchored to the membranes through palmitoylation of a conserved Cys residue found in their C-tails (347 in D_1 , the C-terminus in D_2 -like receptors) (45).

The dopamine receptors contain consensus sequences for glycosylation sites in the N-terminal domain, in addition the D_1 -like subtypes have potential glycosylation sites in their first extracytoplasmic loop. D_1 and D_2 receptors are known to be naturally glycosylated (46) and the cloned D_2 receptor also has been shown to be glycosylated when expressed in an heterologous cell (47). It is noteworthy that these experiments have also shown that the D_2 receptor exhibits a different glycosylation pattern when isolated from different cells and that, since the differently glycosylated receptors have the same pharmacological profile, the glycosylated moiety does not affect ligand recognition.

Ligand Binding

Analogous to the mode of ligand recognition by the rhodopsin and adrenergic receptors, the binding of dopaminergic ligands must involve each receptor's hydrophobic core. This view is supported by the fact that the highest degree of sequence identity is found in the hydrophobic domains. Within their transmembrane domains, the amino acid sequences of the dopamine receptors are 31% identical (Figure 2). This percent increases to 75% and 52% if they are divided into D₁-like and D₂-like receptors, respectively.

The mechanism by which dopamine binding to the receptor induces G protein activity is unknown but most likely involves a cascade of intramolecular reactions. In particular, charged and conserved amino acid residues found in transmembrane domains should participate in dopamine recognition. Indeed, molecular models confirm that the charged residues of the α helices face the inside part of the hydrophobic cleft (48). An Asp (103 in D₁, and 114 in D₂) in transmembrane III and two Ser (199–202 in D₁ and in D₂) in transmembrane domain V could interact with the amine and the hydroxyl groups of dopamine, respectively (48-50). This model was recently tested experimentally and proven valid although the two serine residues in transmembrane domain V differentially affect agonist binding (51). In addition, the dopamine-receptor interaction might be stabilized by the interactions of two Phe residues (Phe 203–289 in D_2 , in transmembrane V and VI) with the benzene ring and by three aromatic residues (Trp 284, Phe 288, Phe 617) which could form an aromatic cluster around the aspartate ammonium ion pair (48). Furthermore, in transmembrane domains II and VII, Asp 70(D₁) or $80(D_2)$ and Asn $324(D_1)$ or $390(D_2)$ might be involved in agonist binding (52, 53). Indeed, mutations of the Asp 80 in the D₂ receptor lead to receptors with different ligand affinities and impaired in their potency to inhibit adenylyl cyclase (54). Finally, two Cys residues found in extracytoplasmic loops (96-186 in D, and 107-182 in D₂) might form a disulfide bond that could affect ligand binding (49).

The cloned dopamine receptors, when expressed by transfection, exhibit binding profiles differentiating them into the D_1 -like and D_2 -like subfamilies. The D_1 -like receptors bind with high affinity D_1 and not D_2 antagonists. A prototypic ligand for the D_1 -like receptors is the benzazepine SCH23390 (Kis < 1 n M). On the other hand they bind the butyrophenone spiperone with low affinity (Kis in the μM range). In contrast, the D_2 -like receptors bind efficiently spiperone (Kis < 1 n M) and not SCH23390 (Ki for D_2 in the μM range); they also recognize most of the neuroleptics. While there is presently no ligand that differentiates the D_1 from the D_5 receptor, several D_2 antagonists can distinguish the different D_2 -like receptors (see below). At the structural level, 21 amino acid residues differentiate D_1 -like from D_2 -like receptors in the transmembrane domains, and these might participate in the selective recognition process (Figure 2).

G Protein Coupling and Desensitization

The receptors' interactions with G proteins involve the cytoplasmic loops (55, 56). The D_2 -like receptors have a large third cytoplasmic loop and a short C-terminal tail, whereas the D_1 -like receptors have a relatively short third cytoplasmic loop and a long C-tail. Since both receptor domains have been implicated in G-protein coupling, their relative homology suggests that

```
I
                                  MRTLNTSAMDGTGLVVERDFSVRILTACFLSLLILSTLLGNTLVQAAVIRFRHLRSKVT
D1
D2
                  MDPLNLSWYDDDLERONWSRPFNGSDGKADRPHYNYYATLLTLLTLLTLAVIVFGNWLWCMAVSREKALOTT T
                         MASLSQLSSHLNYTCGAENSTGASQARPHAYYALSYCALILAIVEGNGLVCMAVLKERALQTT,T
D3
                  MGNRSTADADGLIAGRGPAAGASAGASAGLAGOGAAALVGGVILTIGAVLAGNSLVCVSVATERALOTP.T
D4
          MLPPGSNGTAYPGOFALYOOLAQGNAVGGSAGAPPLGPSQVVTACLLTILLIJWTLLGNVLVCAAIVRSRHLRANMT
D5
                             П
                                                                                 Ш
          Nefvisialvsdulvlavievaldikala (Mergse . Oniwvaflodocstasiintoviesvalaluseeray. .
D1
         NYLIVSLAVADILVATLVMPWVVYLEVVSE WKFSRIHCDIEVTIDMMCTASIINICAISIDRYTAVAMPMIY...
NYLVVSLAVADILVATLVMPWVVYLEVTGGVMPFSRICCDVFVTLDMMCTASIINICAISIDRYTAVVMPVHYDH
NGFIVSLAAADILLALLVIELFVYSEVOCAWLLSPRICCDALMAMDWLCTASIFNICAISVDRFVAVAVPLRYNR
D2
D3
D4
         NVFIVSLAVSDUFVALLVMEWKAVAEVAEY, MPFGAF, ODVWVAFDIMCSTASTINI, CVESMORYWAIISRPFFLY...
D5
                                      IV
          . ERKMTPKAAFILISVAMTLSVLISFIPVQLSWHKA. (20). DSSLSRTYAISSSVISFYIPVAIMIVTETRIYRI
D1
          ntrysskrrvtvmisivmusftiscelleglnnadq...neciianpaevvysšivsevveeivtllvyikiyiv
D2
          GTGQSSCRRVALMITAVHVLAFAVSCPLLFGFNTTGD..PTVCSISNPDFVIYESVVSFYLEFGVTVLVVARIYVV
D3
          . qggs..rrqllliga tmilisaavaapvlcgindvrgrdpavcrledrdyvvysšivcsffiifcpimilixwatfrg
D4
          .krkmtqrmalvmvgladdisilisfipvqlnwhrd.(34).Dsslnrtyaissslisdyldvaimivtytriyri
D5
                                                                             VI
         AQKQIRRIAALERAAVHA. (18), ESSFKMSFKRETKVLKILSVIMGVFVOCMLPFFILNCILPFCGSGETOPFCI
LRRRKKVNTKRSSRAF. (126).MSRRKLSQQKEKNATQMLAIVLGVEIICMLPFFITHILNIHCD.CNIPP...
D1
D2
          LKORRRKRILTRONSOCN.(81).PLOPRGVPLRECKATOMVAIVLGAFIVCMLPFFLTHVLNTHCOTCHVSF...
LORWEVARRAKLHGRAFR.(62).RRRRAKITGREFKAMRVLPVVVGAFLLCMTPFFVVHITQAICPACSVPP...
AQVOIRRISSLERAAEHA.(10).DTSLRASIKKETKVLKTLSVIMGVFVCKLPFFILNCMVPFCSGHPEGEPAG
D3
D4
D5
                                 VII
          ...DSNTFDVFVMFGWANSSLNPILYA.FNADFRKAFSTIL.GGYRLCPATNNAIETVSINNNGAAMFSSHHE
...VLYSAFTWLGYVNSAVNPILYTTENIEFRKAFLKIL.HC
...ELYSATTWLGYVNSALNPVIYTTENIEFRKAFLKIL.SC
...RLVSAVTWLGYVNSALNPVIYTVENAEFRNVFRKALRACC
D1
D2
D3
D4
D5
          FPCVSETTFDVFVWEGWANSSINPVIYA FNADFQKVFAQIL GCSHFCSRTPVETVNISNELISYNQDIVFHK
```

288

CIVELLI ET

receptors of the same subfamily might couple to the same set of G proteins. While this is true for the D_1 -like receptors whose stimulation leads to an increase in cAMP levels, it remains to be shown for all the D_2 -like receptors.

In their cytoplasmic domains, each of the dopamine receptors contains several consensus sites for phosphorylation by cAMP-dependent protein kinase or protein kinase C (22, 26). Several of these sites are present in the third cytoplasmic loop. Biochemical studies have shown that phosphorylation of such residues may attenuate G protein-receptor interactions and that these residues are directly involved in the homologous and heterologous mechanisms of desensitization (57). Since D₂ receptors are subject to desensitization when transfected into heterologous cells (47) while D₁ receptor desensitization occurs in striatal slices (58), model systems can now be established to test whether dopamine receptor phosphorylation affects desensitization.

The data discussed in this section show that the dopamine receptors can be divided into two subfamilies, the D_1 -like and D_2 -like subfamilies. That the D_1 and D_2 receptors are quantitatively predominant, particularly in the central nervous system (see below), may explain why most of the activities attributed to dopamine could be accounted for by the simpler two-receptors system (9). On the other hand, the novel D_3 , D_4 , and D_5 dopamine receptors each have their raison d'être, which might be found by searching for their specific features.

SELECTIVITIES ASSOCIATED WITH THE DIFFERENT DOPAMINE RECEPTORS

The studies made possible by the use of dopamine receptor clones have allowed the discoveries of distinctive features of the different receptor subtypes. This section presents some of these results, in particular those that have helped us reevaluate our understanding of the dopaminergic system and of its roles in brain disorders (Table 1).

Selectivities in Pharmacological Profiles

Thus far, no selective ligand able to differentiate the D_1 from the D_5 receptor has been described. The salient feature of the D_5 receptor is that it binds dopamine with a higher affinity than does the D_1 receptor (35, 36). On the other hand, the pharmacological profiles of the D_3 or D_4 receptors are reminiscent of, yet distinct from, that of the D_2 receptor. Most neuroleptics were developed as D_2 receptor antagonists and have a higher affinity for the D_2 than the D_3 or D_4 receptors. This implies that most of the neuroleptics are still acting predominantly at D_2 receptors in the human brain. However, the few exceptions that have been described are striking. One may help differen-

	_ 1a_	D ₅	D ₂	η	D ₄
GENE and mRNA Chromosome	5q	4p	ilq	3 q	11p
Selective gene expression	<u> </u>	Human pseudogenes 2p, 1q	Alternative splicing D2S/D2L		Polymorphism in human
Intron in coding seq.	N	o		YES	
PROTEIN Seq. identity in TM (%)	10	00		45	
PHARMACOLOGY Prototypic antagonist	SCIL	:3390		SPIPERONE	
Selective antagonist			Haloperidol	AJ76, U11232	Clozapine
BIOLOGY Guanylnucl. sensitivity Adenylyl cyclase Other pathways	yes activation IP3 ¹ , Ca channel	ycs activation	yes inhibition IP3 [†] , K channel	nu ?	yes (7)
LOCALIZATION Respectively high Selective	caudate-putamen nucl. accumbens olfact. tubercle amygdala	hippocampus hypothalamus parafascicular nucl. kidney	caudate-putamen nucl. accumbens olfact. subcrele substantia nigra zona incerta pituitary, adrenal	olfact, tubercle hypothalamus nucl. accumbens islands of Calleja	frontal cortex medulla midbrain mesolimbic system heart

Table 1 Particularities of the different dopamine receptor subtypes.

tiate pre- from postsynaptic receptors, and the other could impact our understanding of the action of an atypical neuroleptic.

The Dopamine Presynaptic Receptors

The receptors harboring a D₂-like pharmacology have been subdivided into pre- and postsynaptic receptors (59). The postsynaptic receptors convey dopamine messages in the postsynaptic cells by inducing a second messenger system, e.g. by decreasing intracellular cAMP levels. The presynaptic or autoreceptors are present on the cells that secrete dopamine. Their stimulation by dopamine is thought to lead to an inhibition of impulse flow, co-transmitter release, and dopamine synthesis and release, thereby regulating dopamine production via a feed-back mechanism. Whether differences exist between pre- and postsynaptic receptors is controversial.

The D₃ receptor binds two antagonists with a higher affinity than does the D₂ receptor (31). These compounds, UH232 and AJ76, are classified as selective for the presynaptic receptors and are the only ligands known to date to be more selective for the D₃ than the D₂ receptor. In addition, dopamine was found to bind the D₃ receptor with a 20-fold higher affinity than the D₂ receptor, a characteristic expected for autoreceptors. Furthermore, the presence of D₃ receptor mRNA in the substantia nigra, a center of dopamine production, supports the hypothesis that the D₃ receptor may be a presynaptic receptor. Note also that the D₂ receptor mRNA is the predominant dopamine receptor mRNA in the subtantia nigra (60) and that, like the D₃ receptor,

6-OHDA lesions show D_2 presence in the dopamine-secreting neurons (31, 61-64). Therefore, both the D_2 and the D_3 receptors are autoreceptors. Whether they are present in the same cells and whether stimulation of the D_3 receptor affects the presynaptic neuron differentially than does the D_2 receptor remain to be determined.

The D4 Receptor Connection to Schizophrenia

Except for clozapine, the D₄ receptor has a lower affinity for neuroleptics than does the D₂ receptor. Clozapine is an "atypical" neuroleptic, i.e. a neuroleptic in which actions are not accompanied by adverse motor control side effects. In schizophrenia therapy, clozapine is administered at a concentration tenfold lower than its affinity constant for the D₂ receptor, indicating that clozapine may not be primarily acting at the D₂ receptor. Since the D₄ receptor binds clozapine with a tenfold higher affinity than does the D₂ receptor (33), it could be classified as the specific clozapine target. A corollary is that antagonism of dopamine binding to the D₄ receptor could be an important step in the prevention of psychoses. Compared to the D₂ gene, the D₄ gene is expressed at low levels, suggesting that D4 receptor-mediated activities are difficult to detect and thus were lost in measurements of D₂ receptor reactivity. Moreover, preliminary data on the tissue distribution of the D₄ mRNA shows that it is most abundant in the frontal cortex, midbrain, amygdala, and medulla, areas associated with psychotic etiologies, and at very low level in the striatum, the site of motor control (S. Watson, personal communication). Thus, the lack of extrapyramidal side effects observed with clozapine treatment may be a reflection of D₄ receptor localization in the CNS. These observations point to the D₄ receptor as an important molecule in balancing emotional control and may serve as a basis for understanding atypical neuroleptic actions.

Selectivities in Biological Activities

The predominant biological activities associated with D_1 and D_2 receptor stimulation are the activation and inhibition, respectively, of adenylyl cyclase activity. The D_2 receptor in lactotroph cells also induces opening of K+ channels and affects phosphoinositide hydrolysis upon dopamine binding (65). The establishment of cell lines expressing individual dopamine receptors through DNA transfection has permitted definitive analyses of each receptor's potential to induce second messenger systems.

Second Messenger Pathways Induced by the D₁ and D₂ Receptors

The ability of dopamine receptors to induce different second messenger pathways has thus far been studied in D₁ and D₂ receptors (66, 67). The D₁ and D₂ receptors induce two types of signal transduction pathways, one

obligatory and several cell-specific. The obligatory pathway is detected in every cellular environment. In D_1 or D_2 receptors it is stimulation or inhibition of adenylyl cyclase, respectively. But dopamine also induced additional and sometimes different signal transduction pathways in Ltk-fibroblast, GH4C1 somatomammotroph, 293 kidney, CHO ovarian, and C6 glioma cells through its interaction with the D_1 and D_2 receptors.

In every cell studied, dopamine stimulation of the D_1 receptor increases cAMP production. In addition, in GH4C1 cells, the D_1 receptor potentiates

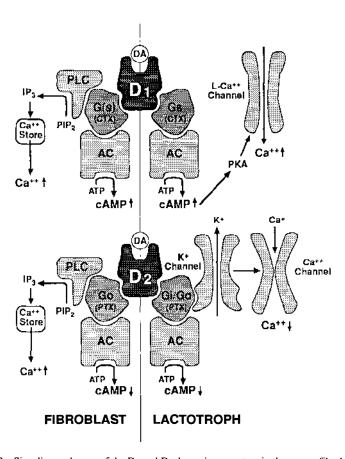


Figure 3 Signaling pathways of the D_1 and D_2 dopamine receptors in the mouse fibroblast Ltkand the rat somatomammotroph GH4Cl cells. Data are taken from (66, 67). DA represents dopamine, CTX and PTX means cholera toxin- and pertussis toxin-sensitive, respectively. G = G protein; PLC = Phospholipase C; AC = Adenylyl cyclase; PIP2 = Phosphoinositol bisphosphate; IP3 = Inositol triphosphate. The direction of arrows indicates whether the second messenger increases or decreases.

activation of L-type voltage-dependent calcium channel in a cAMP-dependent manner (Y. F. Liu, O. Civelli, Q. Y. Zhou, P. R. Albert, submitted). In Ltk-cells, D₁ receptor stimulation leads to an increase in cytosolic free calcium concentrations ([Ca⁺⁺]_i) by mobilization of the intracellular calcium. This effect correlates with an increase in phospholipase C activity (PLC) and is cholera-toxin sensitive (67). The D₂ receptor, while inhibiting adenylyl cyclase activity, does not affect phosphoinositide (PI) hydrolysis in GH4C1 cells and induces a decrease in [Ca⁺⁺]_i mediated by a hyperpolarizing effect, mostly due to activation of K⁺ channels. In Ltk-cells, the D₂ receptor stimulation leads to an increase in [Ca⁺⁺]_i due, in part, to the release of calcium ions from intracellular stores following the rapid stimulation of PI hydrolysis and, in part, to influx from extracellular medium. This surprising induction in PI hydrolysis is not due to the presence of nonphysiological concentrations of D₂ receptors in the cells. PI hydrolysis is induced by dopamine in Ltk-cells containing low levels of D₂ receptor (G. Gatti, C. Muca, E. Chiaregatti, D. K. Grandy, O. Civelli, et al, submitted). In addition, in CHO cells, D₂ receptors mediate the potentiation of arachidonic acid release by a mechanism that involves protein kinase C and that is independent of the concurrent adenylyl cyclase inhibition (69).

These data show that dopamine receptors can potentially induce different second messenger pathways in different cellular environments. The obligatory signaling pathway is always induced while the others are cell-dependent. This dual ability has been described for other G protein-coupled receptors (70–72) and points to the importance of the cellular environment in the outcome of receptor stimulation.

The Lack of Coupling of the D3 Receptor to G Protein

The search for the second messenger pathways induced by D₃ receptor stimulation has led to the surprising conclusion that the D₃ receptor does not seem to link to G proteins (31). The binding of dopamine to the D₃ receptor expressed into CHO or COS-7 cells is not modulated by the addition of guanylnucleotides, which differentiate the high-from the low-affinity state of G protein-coupled receptor and is accepted as an indication of effective G protein to receptor coupling. In addition, the D₃ receptor was unable to affect adenylyl cyclase activity. One possibility is that the D₃ receptor associates selectively with G proteins absent in the test cells. Since, in general, G protein-coupled receptors find G proteins to couple to in CHO and COS-7 cells, the possibility that the D₃ receptor does not couple to G protein might be entertained. In view of its possible autoreceptor nature (see above), it could, for example, act as a scavenger to modulate dopamine release from the presynaptic membrane but would not directly affect intracellular chemistry. However, since the binding of somatostatin to one of its specific receptor

has also been recently found to be insensitive to the addition of guanylnucleotides (73), it is our understanding of guanylnucleotides action that may need to be revised.

Regulation of D₁ and D₂ Receptor Gene Expression

Therapies directed at disorders involving the dopamine receptors are administered over long periods of time. In animals these drug treatments modify the levels of dopamine receptor. It has been suggested that these changes may account for some of the side effects of the drugs. The availability of dopamine receptor clones allowed pilot studies to define which step in the expression of the receptor is affected by these drug-induced changes. Furthermore, genomic elements are also beginning to be characterized that recognize the transcriptional factors modulating dopamine receptor expression.

Regulation of Expression of the D₁ Receptor Gene In Vitro

The D_1 promoter sequences of the rat and human D_1 receptor genes have been determined (74, 75). The D_1 gene contains a small intron that interrupts the 5' untranslated region of its mRNA. The region upstream of the start of transcription does not contain the canonical CAAT or TATA sequences, is G+C rich, and contains multiple potential sites for transcription factors.

Genomic sequences located upstream of the start of transcription (cap site) were evaluated for their ability to direct transcription of the receptor mRNA. It was found that the 735 bases upstream of the cap site were sufficient to confer transcriptional activity and that this activity was cell-specific. Cells endogenously expressing D_1 receptor could express D_1 receptor using this DNA fragment as the promoter, whereas others could not. In addition, it was observed that the D_1 gene promoter is induced in response to cAMP (75), suggesting the existence of an autoregulatory mechanism in D_1 gene expression. Activation of the D_1 receptor by dopamine increases intracellular cAMP level which leads, among other results, to receptor desensitization and enhancement of D_1 gene transcription. Since the D_1 receptor undergoes a very fast turnover (76), the increase in de novo protein synthesis is used as a compensatory mechanism to maintain a sustained dopamine activation. Such a mechanism has been proposed for the β_2 -adrenergic receptor and might be shared by stimulatory receptors (77, 78).

Modulation of D_2 mRNA levels in vivo

The importance of the D₂ receptor in schizophrenia and Parkinson's disease led to two lines of experiments analyzing changes in D₂ receptor mRNA levels.

Chronic neuroleptic administration, the traditional antipsychotic treatment, increases striatal dopamine D₂ receptor binding sites in rats (79). This increase

can account for the behavioral supersensitivity of the drug treatment. Whether the mechanism of this increase involves transcription has been analyzed by measuring D₂ mRNA levels by Northern blot analysis, solution, and in situ hybridization in rats subjected to long-term haloperidol administration. Several reports have concluded that the D₂ mRNA density in the basal ganglia is not affected by this treatment and have suggested that the increases in binding sites may be the result of increased protein stability (80, 81). However, the opposite has also been reported. Chronic haloperidol treatment increases striatal D₂ mRNA levels significantly, doubling it in some cases (82). These conflicting findings need to be reevaluated with regard to the method of mRNA detection and the drug regimen. It is noteworthy that chronic haloperidol treatment differentially affects D₂ mRNA levels in the pituitary, increasing them in the intermediate but not in the anterior lobe (83).

Denervation and degeneration by 6-hydroxydopamine of dopamine neurones have been used as a model for parkinsonism in rats. While the levels of striatal D₂ mRNA increase by about 30% after denervation (84), conflicting results were found after 6-OHDA treatment. Two studies found that the 6-OHDA treatment increases striatal D₂ mRNA by in situ hybridization (63, 64), while one found no change by Northern blot analyses (85). Here again, the methods of detection and the drug paradigms need to be carefully considered. The definitive answer to these questions may be obtained only after these paradigms have been reproduced in cell lines.

Selectivity in Tissue Distribution

One advantage to the organism of an heterogeneous population of dopamine receptors is that it permits selective tissue-specific expression. This would imply that distinct receptor subtypes are expressed in different tissues. Since antibodies against all the different dopamine receptors are not currently available, our knowledge of their tissue distribution comes primarily from in situ hybridization experiments. In the central nervous system, the five dopamine receptors each overlap but also exhibit some striking location differences. In the periphery, the different receptors are mostly expressed in a tissue-specific fashion.

CNS Distribution

The D_1 and D_2 receptor mRNAs are present in all dopaminoceptive regions of the rat brain (60, 61, 86-90). High levels of D_1 and D_2 mRNAs are present in the caudate-putamen, nucleus accumbens and olfactory tubercule, lower levels in the septum, hypothalamus and cortex. Regions where D_2 but no D_1 mRNAs were detected are the substantia nigra and ventral tegmental area, where the D_2 mRNA is expressed at high level, and the hippocampus. Conversely, the amygdala contains D_1 mRNA but little if any D_2 mRNA.

The tissue distribution of the D_1 and D_2 mRNAs in the CNS supports their participation in the different aspects of dopaminergic neurotransmission that have been described on the basis of ligand binding and receptor autoradiography experiments.

Since the tissue distribution of the different dopamine receptors overlap in the CNS, some selectivity may be attained quantitatively rather than qualitatively. First, (as judged from mRNA band intensities (31)) D₃, D₄, and D₅ mRNAs are one to two orders of magnitude lower in abundance than D₁ or D₂ mRNAs (31, 33, 37). Moreover, the relative abundance of the D₁ mRNA is striatum > amygdala > thalamus > mesencephalon > hypothalamus = medulla, that of the D₂ is striatum > mesencephalon > medulla > hypothalamus > hippocampus (22, 26). By comparison, the relative abundance of the D₃ receptor mRNA is olfactory tubercule-Islands of Calleja > nucleus accumbens = hypothalamus > striatum > substantia nigra, it is absent in the hippocampus (31), while that of the D_4 mRNA is medulla = amygdala > midbrain = frontal cortex > striatum > olfactory tubercule > hippocampus (33). So, relative to the D₁ or D₂ receptors, the D₃ and D₄ receptors are more selectively associated with the "limbic" brain, a region that receives its dopamine input from the ventral tegmental area and is associated with cognitive, emotional, and endocrine functions. The location of the D₅ receptor mRNA, on the other hand, is a matter of controversy. The distribution of the D_5 receptor mRNA was first reported to overlap that of the D_1 mRNA (35), but two studies have subsequently conflicted with this view (37, 91). These authors found that the tissue distribution of the D₅ mRNA tissue is highly restricted. The D₅ mRNA is found only in the hippocampus, the hypothalamus, and the parafascicular nucleus of the thalamus and thus might be involved in affective, neuroendocrine, or pain-related aspects of dopaminergic function (91). That the D₅ receptor mRNA is present at a very low level and thus can be easily masked by the predominant D₁ receptor mRNA probably explains the discrepancies in tissue distribution.

One important question unresolved before in situ hybridization experiments was that of the cellular colocalization of the D_1 and D_2 receptors (60). In brain regions where both mRNAs exist, the amounts of each are approximately equal. Analysis of sequential thin sections reveals that D_1 and D_2 mRNA are colocalized in 26–40% of all caudate-putamen cells and in about 50% of all dopamine receptor mRNA-positive cells.

Peripheral Distribution

The D_1 and D_3 receptor mRNAs are practically absent outside of the CNS (26, 31), although the presence of D_1 mRNA in the parathyroid gland, a prototypic location of the D_1 binding site, has not been analyzed thus far. The D_2 receptor mRNA is expressed at high level in the pituitary (22) where

its physiological role in regulating hormone secretion is well-known. No D_1 , D_3 or D_5 receptor mRNA was detected in the pituitary where the D_4 mRNA exists, albeit at low level (92). Finally, the D_2 mRNA is also present in the adrenal gland (H. H. M. Van Tol, J. R. Bunzow, O. Civelli, unpublished data).

A major question about the peripheral dopamine receptors concerns the identity of the receptors present in the kidney and the cardiovascular system; do they differ from those of the CNS as indicated by pharmacological analyses (94)? The peripheral dopamine receptors are of therapeutic importance since their stimulation is used to improve kidney function in case of shock and low cardiac output. Both D₁- and D₂-like activities have been described in the kidney and in the heart (40, 94). The D₅ receptor mRNA is expressed, albeit at low level, in the kidney (J. H. Meador-Woodruff, D. K. Grandy, unpublished data). Whether it is the expected D₁-like receptor or yet another one has not been demonstrated. None of the cloned D2-like receptor mRNAs is present in the kidney. On the other hand, the D₄ mRNA is expressed in the heart (96) and might account for the expected D₂-like reactivity reported for this tissue. The D₁-like receptor mRNAs do not exist in any significant amount in the heart. These data open the possibility that the D₄ and D₅ receptors are the only dopamine receptors present in the kidney and the heart, an hypothesis that must be investigated pharmacologically and physiologically.

In summary, the different dopamine receptors exhibit specificity in their tissue distribution in the periphery. In the CNS, they often share tissue locations and, possibly, individual neurones as in the case of the D_1 and D_2 receptors, although selectivity in cellular distributions has also been found. Furthermore, some selectivity in receptor reactivity may also be gained quantitatively, as suggested by the relative abundance of the subtypes. This abundance indicates that interactions between different subtypes, such as those described between the D_1 and D_2 receptors (97–100), may be an important factor in the regulation of dopamine actions.

Genomic Polymorphism and Alternative pre-mRNA Maturation

Although the human genome as seen now contains five dopamine receptor genes, it encodes a higher number of mRNA species. This increase in complexity results from the discovery that polymorphism and alternative splicing events play a role in dopamine receptor gene expression and leads to the existence of more than five different receptor binding sites. Alternative splicing events and genomic polymorphism have been described for other genes and shown to be physiologically important in several cases (101–104).

Two Alternative Forms of the D2 Receptor

That different dopamine receptors can be expressed from a single gene was first demonstrated by the existence of not one but two dopamine D₂ receptor cDNAs (41, 105–111). These two forms differ in 29-amino acid residues located in the putative third cytoplasmic loop of the receptor. They are generated by an alternative splicing event that occurs during the maturation of the D₂ receptor pre-mRNA (41, 106, 111). This event was demonstrated by the discovery of an 87-bp exon encoding the additional amino acid residues. The 29-amino acid addition contains two potential glycosylation sites but thus far nothing is known about their physiological importance, if any (41). The two D₂ receptor forms are neither species- nor tissue-specific. They exist in human, rat, bovine, mouse, and frogs; they coexist in all tissues analyzed but at a highly variable ratio. The shorter form is the least abundant, its concentration is very low in the pituitary but it represents about half of the D₂ receptor mRNA in the pons or medulla (107, 111).

The presence of a 29-amino acid addition in the third cytoplasmic loop should a priori not affect ligand recognition. Although this was shown for D₂ receptor antagonists whose affinities for the two forms are the same (41, 107), it remains to be shown for agonists. Due to its location in the third cytoplasmic loop, however, the addition was expected to affect G-protein coupling and consequently second messenger systems. It has been shown that both forms can inhibit cAMP accumulation (106). Whether they do so with different efficiencies has been analyzed in two reports. In one report, CHO lines shown to express the same quantities of receptors were established. In these cells, the short form can maximally inhibit cAMP production by up to 85% while the long form can only reach 64% (112). In the other report, a human choriocarcinoma line, JEG-3, was established that expresses β₂-adrenergic receptors (113). Stimulation of this receptor was measured via the cascade of events that leads from the increase in adenylyl cyclase activity to the increase of CREB (cAMP-responsive element-binding protein) binding to CRE. This activation was monitored using a reporter gene containing the CRE sequence linked to CAT (chloramphenicol acetyltransferase) gene, whose activity can be measured biochemically. These cells were transiently transfected with either of the two D₂ receptor form cDNAs and inhibition of cAMP production was reflected by corresponding inhibition in CAT activity. In these assays, the short form of the D₂ receptor elicited a stronger effect on adenylyl cyclase inhibition than the long form (74% versus 61% at 10 µM dopamine) and a lower affinity (EC50 58 nM versus 72 nM). Part of these latter findings might be accounted for by the discovery that the 87 bases differentiating the two receptor forms have a unusually high intrinsic CREB-binding property (M. Martin, J. R. Bunzow, unpublished data). In any case, the merging concept

from these studies is that the short form of the D_2 receptor requires less dopamine to be stimulated and, as a result, cells expressing a higher level of the short form will be activated first. Thereafter, the differences in ratio between the two forms might reflect some physiological differences.

Alternative splicing events have also been shown to occur during the maturation of the D₃ dopamine receptor pre-mRNA (115, 116). These resulting mRNAs would direct the translation of truncated receptor proteins. Indeed, upon transfection of the truncated cDNAs, no dopamine-binding activity was detectable (115). It is thus possible that, in vivo, the truncated mRNAs are products of abnormal posttranscriptional processing, possibly a minor event detectable by the advent of PCR.

Polymorphism in the Human D4 Receptor Gene

Analysis of different human D₄ receptor cDNA sequences demonstrated that the D₄ receptor can exist in at least three variants (Figure 1). These variants differ in the number of 48 base-pair repeats contained in their putative third cytoplasmic loop (92). cDNAs harboring 2, 4, and 7 repeats have been identified from the neuroepithelioma cell line SKN-MC, pituitary, or substantia nigra. These and two more variant alleles have been detected in the genomes of different individuals, showing that a genetic polymorphism is responsible for the generation of the D₄ receptor variants. These repeats are not present in the rat gene, making the polymorphism possibly specific to humans. When expressed by DNA transfection, the variants containing 2, 4, and 7 repeats bind clozapine with equal affinities in the presence of sodium chloride. In the absence of sodium ions, however, the variants containing 2 and 4 repeats had a six- to eightfold lower dissociation constants for clozapine, while the affinity of the variant containing seven repeats was practically unaffected (92). Although the effects that the sodium ions have on receptors are not understood, these data indicate that the variants can behave differently with respect to the mechanism of ligand recognition. The presence of the repeats in the third cytoplasmic loop also suggests differences in G-protein coupling. Furthermore, the discovery of this polymorphism in the human population may enhance understanding of affective disorders at the molecular level.

The D5 Receptor Pseudogenes

The D_5 receptor gene is particular among the G protein-coupled receptors in that it is associated with two pseudogenes in the human genome (36). The three D_5 related genes are found on different chromosomes (117). Only one gene (DRD₅, Chromosome 4 q15.1-q15.3) codes for the active receptor, the two others contain an 8 base-pair insertion that leads to a frame-shift. Since it was demonstrated by expression that the insertion is not part of an intron,

the two other genes (DRD₅P1, Chromosome 2 p11.1-p11.2, and DRD₅P2 Chromosome 1 q21.1) are genuine pseudogenes. Two facts are intriguing about the D₅ pseudogenes: they are embedded in more than 5000 bases that are practically identical on the three chromosomes; and they appear to be specific to human. The rat D₅ gene, which has the same sequence as the D₁b gene, has no pseudogene (117) and some monkeys have only one (118). Together, these data suggest that the evolution of the D₅ pseudogenes is a very recent event that may be restricted to the primates. The D₅ pseudogenes could serve as markers to elucidate the evolutionary process that led to dopamine receptor heterogeneity.

DOPAMINE RECEPTOR AND GENETIC LINKAGE TO HUMAN DISORDERS

Finally, the dopamine receptor clones have also been used to test for possible linkage between the receptor and human neuropsychiatric disorders. Several disorders associated with the malfunctioning of the dopamine system have a genetic component. The identification of restriction length polymorphisms (RFLPs) in the human dopamine receptors genes (25, 30, 119) has permitted their use as probes for linkage analyses of members of these families. Thus far, most studies have involved the D₂ receptor and have used a Taq1 RFLP found downstream of the poly A adenylation site of the D₂ receptor (25). Schizophrenia, Tourette syndrome, and manic depression have been found not to be directly associated with the RFLP of the D2 receptor gene locus (120–123). Furthermore, the D₂ receptor peptide sequences of 14 schizophrenics and 4 controls have been found to be identical (124). Several similar studies are being conducted on D₃ and D₄ receptor genes. In contrast, linkage between the D₂ receptor and severe alcoholism has been reported (125). However, this finding has been a matter of controversy (126) and will undoubtedly be the subject of many more studies.

CONCLUSIONS AND PERSPECTIVES

The identification of "unexpected" dopamine receptor subtypes has had a tremendous impact on our understanding of the dopaminergic system. The diversity of the physiological activities attributed to dopamine can now be analyzed knowing that a greater number of dopamine receptors are involved. The availability of receptor clones, receptor antibodies, and expressed receptor proteins will permit in-depth studies of the circuitry of the dopaminergic system and of the mechanisms regulating it at the genomic and cytoplasmic level. It will also allow us to decipher the physical structure of the receptors and permit the design of highly specific ligands. Eventually, therapies for

disorders associated with malfunction of the dopaminergic system should benefit from the discovery of the receptor heterogeneity. The possibility that the D₃ and D₄ receptors are preferential targets of some neuroleptics (such as the atypical ones) stands as a first example. Our renewed understanding of the dopaminergic system will perhaps shed light on the molecular basis of human psychoses and Parkinson's disease.

Whether other dopamine receptor subtypes exist is still unclear. Heterogeneity is common among G protein-receptor families but the number of members in each family varies (20, 127, 128). This variability indicates that one neurotransmitter can interact with a variety of receptors, a fact that helps support, at a molecular level, the complexity of synaptic transmissions. Interestingly, it seems that each family is composed of two major subtypes distinguishable in the type of obligatory signaling pathways that they induce. There are indications that other receptors in the dopamine receptor family may exist, thus far not cloned (40). A D₁-like and a D₂-like receptor have been detected through expression of their corresponding mRNA or gene but have not been sequenced (129, 130). Since the identification of a new receptor necessitates determination of its sequence, these and other previously detected novel dopamine receptor-like activities remain putative until associated with a defined molecule.

ACKNOWLEDGMENTS

We thank Hubert Van Tol and to Qun-Yong Zhou for many discussions, our lab colleagues and outside collaborators for their contributions to the work discussed in this review, and, in particular, S. Watson, A. Mansour, J. Meador-Woodruff, Huda Akil, J. Gelernter, M. Caron, M. Litt, S. Sommer, J. Ebanks, G. Evans, Y. F. Liu, P. Albert, J. Meldolesi, and L. Vallar for their invaluable help. We also acknowledge J. Tasnady for preparing the manuscript and J. Shiigi for illustrations. The work from our laboratory was supported in part by grants from the National Institute of Health (DK37231, MH45614, MH48991)

Literature Cited

- Ehringer, H., Hornykiewicz, O. 1960. Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des Extrapyramidalen Systems. Klin. Wochenschr. 38:1236– 39
- Birkmayer, W., Hornykiewicz, O. 1962. Der L-Dioxyphenylalanin (=L-DOPA)-Effekt beim Parkinson-Syndrom des Menschen: Zur Pathogenese
- and Behandlung der Parkinson-Akinese. *Arch. Psychiat. Nervenkr.* 203:560–74
- Hornykiewicz, O. 1966. Dopamine and brain function. *Pharmacol. Res.* 18: 925-64
- Carlsson, A., Lindqvist, M. 1963. Effect of chlorpromazine and haloperidol on the formation of 3-methoxytyramine in mouse brain. *Acta Pharmacol*. 20: 140-44
- 5. Carlsson, A. 1988. The current status

- of the dopamine hypothesis of schizophrenia. Neuropsycopharmology 1:179-
- 6. Creese, I., Burt, D. R., Snyder, S. H. 1976. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481-83
- Seeman, P., Lee, T., Chan-Wong, M., Wong, K. 1976 . Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717-19
- Seeman, P. 1987. Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133-52
- Kebabian, J. W., Calne, D. B. 1979. Multiple receptors for dopamine. Nature 277:93-96
- Civelli, ●., Bunzow, J. R., Grandy, D. K., Zhou, Q. Y., Van Tol, H. M. M. 1991. Molecular biology of the dopamine receptors. Eur. J. Pharmacol. 207:277-86
- 11. Grandy, D. K., Civelli, O. 1992. Gprotein-coupled receptors: The new dopamine receptor subtypes. Curr. Opin. Neurobiol. In press
- Sibley, D. R., Monsma, F. J. Jr. 1992. Molecular biology of dopamine receptors. Trends Pharmacol. Sci. 13:61-69
- Dohlman, H. G., Caron, M. G., Lefkowitz, R. J. 1987. A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 26: 2657-64
- Hall, Z. A. 1987. Three of a kind: The β-adrenergic receptor, the musearinic acetylcholine receptor, and rhodopsin. Trends Neurolog. Sci. 10: 99-100
- Probst, W. C., Snyder, L. A., Schuster, D. I., Brosius, J., Sealfon, S. C. 1992. Sequence alignment of the G proteincoupled receptor superfamily. DNA Cell Biol. 11:1-20
- 16. Dixon, R. A. F., Koblika, B. K., Strader, D. J., Benovic, J. L., Dolhman, H. G., et al. 1986. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321:75-79
- Masu, Y., Nakayama, K., Tamaki, H., Harada, Y., Kuno, M., et al. 1987. cDNA cloning of bovine substance-k receptor through oocyte expression system. Nature 329:836-38
- Kubo, T., Maeda, A., Sugimoto, K. Akiba, I., Mikami, A., et al. 1986. Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence. FEBS Lett. 209:367–72
- Peralta, E. G., Winslow, J. W., Peter-

- son, G. L., Smith, D. H., Ashkenazi, A., et al. 1987. Primary structure and biochemical properties of an M2 muscarinic receptor. Science 236:600-5
- Bonner, T. I., Buckley, N. J., Young, A. C., Brann, M. R. 1987. Identification of a family of muscarinic acetylcholine receptor genes. Science 237: 527-32
- Bunzow, J. R., Zhou, Q. Y., Civelli, O. 1992. Cloning of dopamine receptors: Homology approach. Meth. Neurosci. 9:441–53
- Bunzow, J. R., Van Tol, H. H. M., Grandy, D. K., Albert, P., Salon, J., et al. 1988. Cloning and expression of a rat D₂ dopamine receptor cDNA. Nature 336:783-87
- 23. Albert, P. R., Neve, K. A., Bunzow, J. R., Civelli, O. 1990. Coupling of a cloned rat dopamine D2 receptor to inhibition of adenylyl cyclase and prolactin secretion. J. Biol. Chem. 265: 2098-104
- Neve, K. A., Henningsten, R. A., Bunzow, J. R., Civelli, O. 1989. Functional characterization of a rat dopamine D₂ receptor cDNA expressed in mammalian cell lines. Mol. Pharmacol. 36:446-51
- 25. Grandy, D. K., Litt, M., Allen, L., Bunzow, J. R., Marchionni, M., et al. 1989. The human dopamine D2receptor gene is located on chromosome 11 at q22-q23 and identifies a Tag1 RFLP. Am. J. Hum. Genet. 45:778-85
- 26. Zhou, Q. Y., Grandy, D., Thambi, L., Kushner, J., Van Tol, H. H. M., et al. 1990. Cloning and expression of human and rat Di dopamine receptors. Nature 347:76-80
- Sunahara, R. K., Niznik, H. B., Weiner, D. M., Storman, T. M., Brann, M. R., et al. 1990. Human dopamine D₁ receptor encoded by an intronless gene on chromosome 5. *Nature* 347:80–83
- 28. Monsma, F. J. Jr., Mahan, L. C., McVittie, L. D., Gerfen, C. R., Sibley, D. R. 1990. Molecular cloning and expression of a D₁ dopamine receptor linked to adenylyl cyclase activation. Proc. Natl. Acad. Sci. USA 87:6723-27
- 29. Dearry, A., Gingrich, J. A., Falardeau, P., Fremeau, R. T., Bates, M. D., et al. 1990. Molecular cloning and expression of the gene for a human D₁ dopamine receptor. Nature 347:72-76
- 30. Grandy, D. K., Zhou, Q. Y., Allen, L., Litt, R., Magenis, R. E., et al. 1990. A human D₁ dopamine receptor gene is located on chromosome 5 at

- q35.1 and identifies an EcoRI RFLP, Am. J. Hum. Genet. 47:828-34
- 31. Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L., Schwartz, J. C. 1990. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146-51
- Giros, B., Martres, M. P., Sokoloff, P., Schwartz, J. C. 1990. Clonage du 32. gene du recepteur dopaminergique D₃ humain et identification de son chromosome. C. R. Acad. Sci. 311:501-8
- Van Tol, H. H. M., Bunzow, J. R., Guan, H. C., Sunahara, R. K., Seeman, P., et al. 1991. Cloning of a human dopamine D4 receptor gene with high affinity for the antipsychotic clozapine. Nature 350:610-14
- 34. Gelernter, J., Kennedy, J. L., Van Tol, H. H. M., Civelli, O., Kidd, K. K. 1992. The D₄ dopamine receptor (DRD4) maps to distal 11p close to HRAS. Genomics 13:208-10
- Sunahara, R. K., Guan, H. C., O'Dowd, B. F., Seeman, P., Laurier, L. G., et al. 1991. Cloning of the gene for a human dopamine D 5 receptor with higher affinity for dopamine
- than D₁. Nature 350:614-19 Grandy, D. K., Zhang, Y., Bouvier, C., Zhou, Q. Y., Johnson, R. A., et al. 1991. Multiple D₅ dopamine receptor genes: A functional receptor and two pseudogenes. Proc. Natl. Acad. Sci. USA 88:9175-79
- Tiberi, M., Jarvie, K. R., Silvia, C., Falardeau, P., Gingrich, J. A., et al. 1991. Cloning, molecular characterization and chromosomal assignment of a gene encoding a second D₁ dopamine receptor subtype: Differential expression pattern in rat brain compared with the D₁ receptor. *Proc. Natl. Acad. Sci.* USA 88:7491-95
- Eubanks, J. H., Altherr, M., Wagner-McPherson, C., McPherson, J. D., Wasmuth, J. J., et al. 1992. Localization of the D₅ dopamine receptor gene to human chromosome 4pl5.1pl5.3, centromeric to the Huntington's disease locus. Genomics 12:510-16
- 39. Leff, S. E., Creese, I. 1985. Interactions of dopaminergic agonists and antagonists with dopaminergic D3 binding sites in rat striatum: Evidence the [3H] dopamine can label a high affinity agonist-binding state of the D₁ dopamine receptor. Mol. Pharmacol. 27: 184-92
- 40. Andersen, P. H., Gingrich, J. A., Bates, M. D., Dearry, A., Falardeau, P., et al. 1990. Dopamine receptor

- subtypes:beyond the D₁/D₂ classification. Trends Pharmacol. Sci. 11:231-36
- 41. Grandy, D. K., Marchionni, M. A., Makam, H., Stofko, R. E., Alfano, M., et al. 1989. Cloning of the cDNA and gene for a human D₂ dopamine receptor. Proc. Natl. Acad. Sci. USA 86:9762-66
- 42. Julius, D. 1991. Molecular biology of serotonin receptors. Annu. Rev. Neurosci. 14:335-60
- Deleted in proof 43.
- Dohlman, H. G., Thorner, J., Caron, M. C., Lefkowitz, R. J. 1991. Model systems for the study of seven-transmembrane-segment receptors. Annu. Rev. Biochem. 60:653-88
- O'Dowd, B. F., Hnatowich, M., Caron, M. G., Lefkowitz, R. J., Bouvier, M. 1989. Palmitoylation of the human β_2 -adrenergic receptor. J. Biol. Chem. 264:7564-69
- Strange, P. G. 1990. Aspects of the structure of the D₂ dopamine receptor. Trends Neurolog. Sci. 13:373-78
- 47. Bates, M. D., Gingrich, J. A., Bunzow, J. R., Falardeau, P., Dearry, A., et al. 1990. Molecular characterization of dopamine receptors. Am. J. Hyperten. 3:295-305
- Hibert, M. R., Trumpp-Kallmeyer, S., Bruinvels, A., Hoflack, J. 1991. Threedimensional models of neurotransmitter G-binding protein-coupled receptors. Mol. Pharmacol. 40:8-15
- Dixon, R. A. F., Sigal, I. S., Vandelore, M. R., Register, R. B., Scattergood, W., et al. 1987. Structural features required for ligand binding to the β -adrenergic receptor. *EMBO J*. 6:3269
- Strader, C. O., Candelore, M. R., Hill, W. S., Sigal, I. S., Dixon, R. A. F. 1989. Identification of two serine residues involved in agonist activation of the β -adrenergic receptor. J. Biol. Chem. 264:13572-78
- Mansour, A., Meng, F., Meador-Woodruff, J. H., Taylor, L. P., Civelli, O., et al. 1992. Site-directed mutageneis of the human D_2 receptor. J. Biol. Chem. In press
- Strader, C. D., Sigal, I. S., Register, R. B., Candelore, M. R., Rands, E., et al. 1987. Identification of residues required for ligand binding to the βadrenergic receptor. Proc. Natl. Acad. Sci. USA 84:4384-88
- Strader, C. D., Sigal, I. S., Candelore, M. R., Rands, E., Hill, W. S., et al. 1988. Conserved aspartic acid residues 79 and 113 of the β-adrenergic receptor

- have different roles in receptor function. J. Biol. Chem. 263:10267-71
- Neve, K. A., Cox, B. A., Henningsen, R. A., Spanoyannis, A., Neve, R. L. 1991. Pivotal role for aspartate-80 in the regulation of dopamine D2receptor affinity for drugs and inhibition of adenylyl cyclase. *Mol. Pharmacol*. 39:733-39
- Dixon, R. A. F., Sigal, I. S., Strader, C. D. 1988. Structure-function analysis of the β-adrenergic receptor. Cold Spring Harbor Symp. 53:487-98
- Lefkowitz, R. J., Kobilka, B. K., Benovic, J. L., Bouvier, M., Cotecchia, S., et al. 1988. Molecular biology of adrenergic receptors. Cold Spring Harbor Symp. 53:507-14
- O'Dowd, B. F., Lefkowitz, R. J., Caron, M. G. 1989 . Structure of the adrenergic and related receptors. *Annu. Rev. Neurosci.* 12:67–83
- Memo, M., Lovenberg, W., Habauer, I. 1982. Agonists-induced subsensitivity of adenylate cyclase coupled with a dopamine receptor in slices from rat corpus striatum. Proc. Natl. Acad. Sci. USA 79:4456-60
- Wolf, M. E., Roth, R. H. 1987.
 Dopamine autoreceptors. In *Dopamine Receptors*, ed. I. Creese, C. M. Fraser, pp. 45–96. New York: Liss
- Meador-Woodruff, J. H., Mansour, A., Healty, D. J., Kuehn, R., Zhou, A. Q., et al. 1991. Comparison of the distributions of D₁ and D₂ dopamine receptor mRNAs in rat brain. Neuropsychopharmacology 5:231-42
- Mansour, A., Meador-Woodruff, J., Bunzow, J., Civelli, O., Akil, H., et al. 1990. Localization of dopamine D2receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization-receptor audoradiographic analysis. J. Neurosci. 10:2587-600
- Chen, J. F., Qin, Z. H., Szele, F., Bai, G., Weiss, B. 1991. Neuronal localization and modulation of the D2dopamine receptor mRNA in brain of normal mice and mice lesioned with 6-hydroxydopamine. Neuropharmacology 30:927-41
- Gerfen, C. R. Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., et al. 1990. D₁ and D₂ dopamine receptorregulated gene expression of striatonigral and striatopallidal neurons. *Science* 250:1429-30
- Mansour, A., Meador-Woodruff, J. H., Camp, D. M., Robinson, T. E., Bunzow, J., et al. 1989. The effects of nigrostriatal 6-hydroxydopamine lesions

- on dopamine D₂ receptor mRNA and opioid systems. In *The International Narcotics Research Conference (INRC)*, pp. 227-30. New York: Liss
- Vallar, L., Meldolesi, J. 1989. Mechanisms of signal transduction at the dopamine D₂ receptor. Trends Pharmacol. Sci. 10:74-77
- Vallar, L., Muca, C., Magni, M., Albert, P., Bunzow, J., et al. 1990. Differential coupling of dopamineregenic D2 receptors expressed in different cell types. J. Biol. Chem. 265:1032–1036
- 67. Deleted in proof
- 68. Deleted in proof
- Kanterman, R. Y., Mahan, L. C., Briley, E. M., Monsma, F. J. Jr., Sibley, D. R., et al. 1990. Transfected D₂ dopamine receptors mediate the potentiation of arachidonic acid release in chinese hamster ovary cells. *Mol. Pharmacol.* 39:364-69
- Ashkenazi, A., Winslow, J. W., Peralta, E. G., Peterson, G. L., Schimerlik, M. I. et al. 1987. An M₂ muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. *Science* 238:672-75
- Ashkenazi, A., Peralta, E. G., Winslow, J. W., Ramachandran, J., Capon, D. J. 1989. Functional diversity of muscarinic recpetor subtypes in cellular signal transduction and growth. Trends Pharmacol. Sci. 10:16-22 (Suppl.)
- Stein, R., Pinkas-Kramarski, R., Sikolovsky, M. 1988 Cloned M₁ muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover. EMBO J. 7:3031–35
- Rens-Domiano, S., Law, S., Yamada, Y., Seino, S., Belle, G. I., et al. 1992. Pharmacological properties of two cloned somatostatin receptors. Mol. Pharmacol. In press
- Minowa, M. T., Minowa, T., Monsma, F. J. Jr., Sibley, D. R., Mouradian, M. M. 1992. Characterization of the 5' flanking regions of the human D IA dopamine receptor gene. Proc. Natl. Acad. Sci. USA 89:3045-49
- Zhou, Q. Y., Li, C., Civelli, O. 1992. Characterization of gene organization and promoter region of the rat dopamine D₁ receptor gene. J. Neurochem. In press
- Fuxe, K., Agnati, L. F., Pich, E. M., Meller, E., Goldstein, M. 1987. Evidence for a fast receptor turnover of D₁ dopamine receptors in various forebrain regions of the rat. *Neurosci. Lett.* 81:183-87
- 77. Collins, S., Altschmied, J., Herbsman,

- O., Caron, M. G., Mellon, P. L., et al. 1990. A cAMP response element in the β2-adrenergic receptor gene confers transcriptional autoregulation by cAMP. J. Biol. Chem. 265:19330-35 Hershey, A. D., Dykema, P. E.,
- Krause, J. E. 1991. Organization, structure, and expression of the gene encoding the rat substance P receptor. J. Bio. Chem. 266:4366-74
- Norman, A. B., Battaglia, G., Creese, I. 1987. Differential recovery rates of rat D₂ dopamine receptors as a function of aging and chronic reserpine treatment following irreversible modification: A key to receptor regulatory mcchanisms. J. Neurosci. 7:1484-91
- Van Tol, H. H. M., Riva, M., Civelli, O., Creese, I. 1990. Lack of effect of chronic dopamine receptor blockade on D₂ dopamine receptor mRNA level. Neurosci. Lett. 111:303-8
- Srivastava, L. K., Morency, M. A., Bajwa, S. B., Mishra, R. K. 1990. Effect of haloperidol on expression of dopamine D₂ receptor mRNAs in rat brain. J. Mol. Neurosci. 2:155-61
- Le Moine, C., Normand, E., Guitteny, A. F., Fouque, B., Teoule, R., et al. 1990. Dopamine receptor gene express by enkephalin neurons in rat forebrain. Proc. Natl. Acad. Sci. USA 87:230-34
- 83. Autelitano, D. J., Snyder, L., Sealfon, S. C., Roberts, J. L. 1989 Dopamine D2-receptor messenger RNA is differentially regulated by dopaminergic agents in rat anterior and neurointermediate pituitary. Mol. Cell. Endocrinol. 67:101-5
- Neve, K. A., Neve, R. L., Fidel, S., Janowsky, A., Higgins, G. A. 1991. Increased abundance of alternatively spliced forms of D₂ dopamine receptor mRNA after denervation. Proc. Natl. Acad. Sci. 88:2802-6
- Martres, M. P., Sokoloff, P., Giros, B., Schwartz, J. C. 1992. Effects of dopaminergic transmission interruption on the D₂ receptor isoforms in various cerebral tissues. J. Neurochem. 58:673-79
- Meador-Woodruff, J. H., Mansour, A., Bunzow, J. R., Van Tol, H. H. M., Watson, S., et al. 1989. Distribution of D₂ dopamine receptor mRNA in rat brain. Proc. Natl. Acad. Sci. USA 86:7625-28
- Mengod, G., Martinez-Mir, M. I., Vilaro, M. T., Palacios, J. M. 1989. Localization of the mRNA for the dopamine D₂ receptor in the rat brain by in situ hybridization histochemistry. Proc. Natl. Acad. Sci. USA 86:8560-64

- Najlerahim, A., Barton, A. J. L., Harrison, P. J., Heffernan, J., Pearson, R. C. A. 1989. Messenger RNA encoding the D₂ dopaminergic receptor detected by in situ hybridization histochemistry in rat brain. FEBS Lett. 255:335-39
- Weiner, D. M., Brann, M. R. 1989. The distribution of a dopamine D₂ receptor mRNA in rat brain. FEBS Lett. 253:207-13
- 90. Fremeau, R. T. Jr., Duncan, G. E., Fornaretto, M. G., Dearry, A., Gingrich, J. A., et al. 1991. Localization of D₁ dopamine receptor mRNA in brain supports a role in cognitive, affective, and neuroendocrine aspects of dopaminergic neurotransmission. Proc. Natl. Acad. Sci. USA 88:3772-76
- 91. Meador-Woodruff, J. H., Mansour, A., Grandy, D. K., Civelli, O., Watson, S. J. 1992. Distribution of D5 dopamine receptor mRNA in rat brain. FEBS Lett. In press
- Van Tol, H. M. M., Wu, C. M., Guan, H. C., Ohara, K., Bunzow, J. R., et al. 1992. Multiple dopamine D4 receptor variants in the human population. Nature 358:149-52
- 93. Deleted in proof
- 94. Felder, R. A., Felder, C. A., Eisner, F. M., Jose, P. A. 1989. The dopamine receptor in adult and maturing kidney. Am. Physiol. J. F315–27
- Deleted in proof O'Malley, K. L., Harmon, S., Tang, L., Todd, R. D. 1992. The rat dopamine D₄ receptor: Sequence, gene, structure, and demonstration of expression in the cardiovascular system. New Biol. 4:137-46
- Waddington, J. L. 1989. Functional interactions between D1 and D2 dopamine receptor systems: Their role in the regulation of psychomoter behavior, putative mechanisms, and clinical rel-
- evance. J. Psychopharmacol. 3:54-63 Walters, J. R., Bergstrom, D. A., Carlson, J. H., Chase, T. N., Braun, A. R. 1987 D₁ dopamine receptor activation required for postsynaptic expression of D2 agonist effects. Science 269:719–22
- Seeman, P., Niznik, H. B., Guan, H.-C., Booth, G., Ulpian, C. 1989. Link between D₁ and D₂ dopamine receptors is reduced in schizophrenia and Huntington diseased brain. *Proc.* Natl. Acad. Sci. USA 86:10156-60
- 100. Bertorello, A. M., Hopfield, J. F., Aperia, A., Greengard, P. 1990. Inhibition by dopamine of (Na + K+) ATPase activity in neostriatal neurons

through D₁ and D₂ dopamine receptor synergism. *Nature* 347:386-88

- 101. Orkin, S. M., Kazazian, H. H., Autorarakis, S. E., Goff, S. C., Boehm, C., et al. 1982. Linkage of betathalassaemia mutations and beta-globin gene polymorphisms with DNA polymorphisms in human beta-globin gene cluster. *Nature* 296:627-31
- Treisman, R., Orkin, S. H., Maniatis, T. 1983. Specific transcription and RNA splicing defects in five cloned β-thalassaemia genes. *Nature* 302:591– 96
- 103. Mahadevan, M., Tsilfidis, C., Sabourin, L., Shutler, G., Amemiya, C., et al. 1992. Myotonic dystrophy mutation: An unstable CTG repeat in the 3' untranslated region of the gene. Science 255:1253-55
- 104. Fu, Y. H., Pizzuti, A., Fenwick, R. G. Jr., King, J., Rajnarayan, S., et al. 1992. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255:1256-58

 Selbie, L. A., Hayes, G., Shine, J. 1989. The major dopamine D₂ receptors: Molecular analysis of the human D₂A subtype. DNA 8:683-89

- Dal Toso, R., Sommer, B., Ewert, M., Herb, A., Pritchett, D. B., et al. 1989. The dopamine D₂ receptor: Two molecular forms generated by alternative splicing. EMBO J. 8:4025-34
- 107. Giros, B., Sokoloff, P., Martres, M. P., Rious, J. F. 1989. Emorine, L. J., et al. Alternative splicing directs the expression of two D2 dopamine receptor isoforms. *Nature* 342:923-26
- Monsma, F. J. Jr., McVittie, L. D., Gerfen, C. R., Mahan, L. C., Sibley, D. R. 1989. Multiple D₂ dopamine receptors produced by alternative RNA splicing. Nature 342:926-29
- Chio, C. L., Hess, G. F., Graham, R. S., Hugg, R. M. 1990. A second molecular form of D₂ dopamine receptor in rat and bovine caudate nucleus. *Nature* 343:266-69
- Miller, J. C., Wang, Y., Filer, D. 1990. Identification by sequence analysis of a second rat brain cDNA encoding the dopamine D₂ receptor. Biochem. Biophys. Res. Commun. 166: 109-12
- 111. O'Malley, K. L., Mack, K. J., Gandelman, K. Y., Todd, R. D. 1990. Organization and expression of the rat D₂A receptor gene: Identification of alternative transcripts and a variant donor splice site. *Biochemistry* 29: 1367-71

- 112. Hayes, G., Biden, T. J., Selbie, L. A. 1992. Structural subtypes of the dopamine D₂ receptor are functionally distinct: Expression of the cloned D_{2A} and D_{2B} subtypes in a heterologous cell line. Mol. Endocrinol. 6:920-26
- 113. Montmayeur, J. P., Borrelli, E. 1991. Transcription mediated by a cAMP-responsive promoter element is reduced upon activation of dopamine D₂ receptors. *Proc. Natl. Acad. Sci. USA* 88: 3135–39
- 114. Deleted in proof
- 115. Giros, B., Martres, M. P., Pilon, C., Sokoloff, P., Schwartz, J. C. 1991. Shorter variants of the D₃ dopamine receptor produced through various patterns of alternative splicing. Biochem. Biophys. Res. Commun. 176:1584-92
- Snyder, L. A., Roberts, J. L., Sealfon, S. C. 1991. Alternative transcripts of the rat and human dopamine D3 receptor. Biochem. Biophys. Res. Commun. 180:1031-35
- 117. Grandy, D. K., Allen, L. J., Zhang, Y., Zhou, Q. Y., Magenis, R. E., et al. 1992. Chromosomal localization of the three human D₅ dopamine receptor genes. Genomics. Submitted
- 118. Nguyen, T. 1991. Human dopamine D5 receptor pseudogenes. Gene 109: 211-18
- 119. Hauge, X. Y., Grandy, D. K., Eubanks, J. H., Evans, G. A., Civelli, O., et al. 1991. Detection and characterization of additional DNA polymorphisms in the dopamine D₂ receptor gene. Genomics 10:527–30
- Byerly, W., Leppert, M., O'Connell, P., Mellon, C., Holick, J., et al. 1990.
 D2 dopamine receptor gene is not linked to manic-depression in three familes. Psychol. Genet. 1:55-62
- Gélernter, J., Pakstis, A., Pauls, D., Kurlan, R., Gancher, S. T., et al. 1990. Gilles de la Tourette syndrome is not linked to D₂ dopamine receptors. Arch. Gen. Psychol. 47:1073-77
- Devor, E. J., Grandy, D. K., Civelli, O., Litt, M., Burgess, A. K., et al. 1990. Genetic linkage is excluded for the D₂-dopamine receptor λHD₂G₁ and flanking loci on chromosome 11q22-q23 in Tourette syndrome. Hum. Hered. 40:105-8
- 123. Moises, H. W., Gelernter, T., Grandy, D. K., Giuffra, L. A., Kennedy, J. L., et al. 1991. Exclusion of the D₂ dopamine receptor gene as candidate gene for schizophrenia. Ann. Gen. Psychol. 48:643–47
- 124. Sarkar, G., Kapelner, S., Grandy, D.

- K., Marchionni, M., Civelli, O., et al. 1991. Direct sequencing of the dopamine D2 receptor (DRD2) in schizophrenics reveals three polymorphisms but no structural change in the receptor. Genomics 11:8-14
- Blum, K., Noble, P., Sheridan, P. J., Montgomer, A., Ritchie, T., et al. 1990. Allelic association of human dopamine D₂ receptor gene in alcoholism. J. Am. Med. Assoc. 263: 2055-60
- 126. Bolos, A. M., Dean, M., Lucas-Derse, S., Ramsburg, M., Brown, G. L., et al. 1990. Population and pedigree studies reveal a lack of association between the dopamine D2 receptor gene and alcoholism. J. Am. Med. Assoc. 264: 3156-60
- Schwinn, D. J., Lomasney, J. W., Lorenz, W., Szklut, P. J., Fremeau, R. T., et al. 1990. Molecular cloning

- and expression of the cDNA for a novel α_1 -adrenergic receptor subtype. J. Biol. Chem. 265:8183-89
- 128. Emorine, L. J., Marullo, S., Briand-Sutren, M. M., Patey, G., Tate, K., et al. 1989. Molecular characterization of the human β_3 -adrenergic receptor. Science 245:1118-21
- Mahan, L. C., Burch, R. M., Monsma, F. J., Sibley, D. R. 1990. Expression of striatal D₁ dopamine receptors coupled to inositol phosphate production and Ca²⁺ mobilization in *Xenopus* oocytes. Proc. Natl. Acad. Sci. USA 87:2196~200
- 130. Todd, R. D., Khurana, T. S., Sajovic, P., Stone, K. R., O'Malley, K. L. 1989. Cloning of ligand-specific cell lines via gene transfer: Identification of a D₂ dopamine receptor subtype. Proc. Natl. Acad. Sci. USA 86:10134-